磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 210 章 三角换元法之探

又一日,学堂之内,戴浩文再开新篇。

戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”

众学子皆屏气凝神,静待下文。

李华拱手问道:“先生,此三角换元法又是何意?”

戴浩文微笑答道:“且看,若有方程 x2 + y2 = 1,吾等可设 x = cosθ,y = sinθ,此即为三角换元。”

张明面露疑惑:“先生,为何如此设之?”

戴浩文耐心解释道:“诸君可知三角函数之特性?cos2θ + sin2θ = 1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”

王强问道:“那若方程为 x2 + 4y2 = 4,又当如何?”

戴浩文道:“此时,可设 x = 2cosθ,y = sinθ。如此,原方程便化为 4cos2θ + 4sin2θ = 4,正合题意。”

赵婷轻声道:“先生,此设颇有巧妙之处。”

戴浩文点头道:“然也。再看若有式子 √(1 - x2),吾等设 x = sinθ,则此式可化为 √(1 - sin2θ) = cosθ 。”

李华思索片刻道:“先生,此换元法于解题有何妙处?”

戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数 x + √(1 - x2) 之值域。”

众学子纷纷低头思索。

戴浩文见状,提示道:“已设 x = sinθ,代入可得 sinθ + cosθ 。诸君可还记得两角和之公式?”

张明恍然道:“先生,吾记得,sinθ + cosθ = √2sin(θ + π\/4) 。”

戴浩文赞道:“善!由此可知其值域为 [-√2, √2] 。”

王强又问:“先生,若式中含分式,又当如何?”

戴浩文道:“莫急,若有式子 (1 - x2) \/ (1 + x2) ,设 x = tanθ ,则可化简求解。”

赵婷道:“先生,此中计算恐有繁难之处。”

戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”

说罢,戴浩文在黑板上详细演示计算过程。

......

如此讲学许久,学子们对三角换元法初窥门径。

戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”

学子们领命而去,皆欲深研此奇妙之法。

数日之后,众学子再次齐聚学堂。

戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”

学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”

戴浩文微笑道:“但说无妨。”

李华拱手道:“若方程为 9x2 + 16y2 = 144,该如何进行三角换元?”

戴浩文答道:“可设 x = 4cosθ,y = 3sinθ。如此一来,原方程化为 16cos2θ + 9sin2θ = 144,与原式契合。”

王强接着问道:“先生,那对于形如 √(x2 - 2x + 1) 这样的式子,又当如何三角换元?”

戴浩文耐心解释道:“先将其化为 √((x - 1)2) = |x - 1| ,再设 x - 1 = t ,若要三角换元,可令 t = sinθ 。”

赵婷疑惑道:“先生,为何有时设 x = cosθ ,有时又设 x = sinθ 呢?”

戴浩文道:“此需视具体问题而定。若方程或式子之形式与 cosθ 或 sinθ 之特性相关,便按需设之。”

张明道:“先生,三角换元法在求定积分时可有应用?”

戴浩文点头道:“自然有。譬如求∫(0 到 1) √(1 - x2) dx ,设 x = sinθ ,则可将其化为三角函数之积分,求解更为简便。”

说罢,戴浩文在黑板上详细推演计算过程。

“诸位且看,如此换元之后,积分上下限亦需相应变换。”

学子们目不转睛,仔细聆听。

王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”

戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数 f(x) = √(2 - x - x2) ,先将其内部配方,再进行三角换元。”

戴浩文边讲边写,学子们不时点头,似有所悟。

李华又问:“先生,三角换元法与均值换元法可有相通之处?”

戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”

......

戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。

不知不觉,日已西斜。

戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”

学子们躬身行礼:“谨遵先生教诲。”

众人散去,然对三角换元法之探索,方兴未艾。

又过数日,课堂之上。

戴浩文道:“今来考查一番尔等对三角换元法之掌握。”

遂出一题:求函数 y = x + √(2 - x2) 的最大值。

学子们纷纷提笔计算。

片刻后,赵婷起身道:“先生,学生设 x = √2 cosθ ,解得最大值为√2 。”

戴浩文微微颔首:“不错。那再看此题,若 x、y 满足 x2 + y2 - 2x + 4y = 0 ,求 x - 2y 的最大值。”

众学子再度陷入沉思。

张明道:“先生,可否设 x - 2y = z ,将其转化为直线与圆的位置关系,再用三角换元求解?”

戴浩文抚掌大笑:“妙哉!果能举一反三。”

就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。

......

时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。

磨铁读书推荐阅读:逼妖为良:妖孽殿下来敲门我的老婆是执政官大明:不交税就是通鞑虏盛嫁之庶女风华流氓帝师大唐:权谋凭着不是反派活着大华春秋,混在秦末一统天下棘圜志这个萌娃竟然是大明太孙朱雄英一梦越万年我在大唐斩妖邪抗战之第十班从废物到大帝,你们高攀不起!万历1592从敌国开始征战蜀汉的复兴红楼之开国篇开局百万熟练度,我举世无敌召唤系统:从土匪开始称霸天下我在宋朝教王安石变法太超前亮剑之浴血抗战捡到一本三国志三国:让你降吴,你绑架孙权大文学家水浒赘婿:娘子,我们反了吧!三国:虎牢关前,开局秒杀关二爷带着诸天万佛金身重塑系统穿越了我在影视世界和主角抢机缘后汉英雄传之重生吕布神探张天海腹黑丞相的宠妻三路牧唐开局狂怼三野狗,二斤狗肉换姑娘李世民假死,那天下不就是小爷的了?大唐再起三国之公孙大帝大明:开局我跟朱元璋谈人丁税清正史编代九龙夺嫡,废物皇子竟是绝世强龙今晚教坊司包场,女帝破门而入三国黄巾逆袭抗旨他都敢,还有什么不敢做?世子的侯门悍妻大秦带我那迷人的老祖宗统一地球我是正统我怕谁郭嘉三国:搞定蔡文姬:斩获霸王之力宋宫十八朝演义大明匹夫
磨铁读书搜藏榜:相府毒千金三国第一奸贼鬼明开局重生太子丹,郭嘉带我复兴大燕开局怒喷扶苏,这个皇帝我来当!特种兵之神级技能男配个个是戏精庶女攻略我在大唐行医的那些年陛下,臣只想吃软饭史上最强太子!从门吏开始光宗耀祖大庆风云录大明中兴全凭杀杀杀抢抢抢大明忠勇侯我真不想当圣人啊!关于我穿越大明当皇帝这件事不好!魏征又带他儿子上朝了!大明:开局将朱祁镇驱逐朱家!靑海传词条返还,一统天下从收徒朱元璋开始金牌帝婿三国:最强争霸系统妃皇腾达,傲世毒妃不好惹饥荒开局:惨死的都是有粮的我给崇祯当老师绝色红颜,高门贵妻大航海之重生主宰我的帝国弗利兰出生后就被内定为皇后重生之再造华夏再生缘:我的温柔暴君(全本+出版)高武三国:从被华雄秒杀开始汉末:袁本初重铸霸业卫青传奇人生大唐太子李承乾,李世民求我登基三国崛起并州与秦始皇做哥们儿异界摆摊,县令催我快出摊南宋弃子国宝的文明密码请叫我威廉三世三国之极品纨绔三国之从益州争霸开始大明:模拟曝光,朱元璋让我造反夺舍崇祯:成就华夏帝国穿越成无敌的明朝皇帝红楼:曹操转生,开局杀贾珍皇帝:朕的九皇子带兵,天下无敌错进洞房:娘子快到碗里来
磨铁读书最新小说:再续蜀汉的浪漫铁血西域:开局结果了噶尔丹乱匪开局,看我如何倒反天罡!沈少卿探案智霸大夏:从地主傻儿到开国大帝我只做风流皇帝,天下美人皆归朕宋骑天下一人修真传带着八位嫂嫂流放本想混口饭,科举连中六元惊陛下八百铁骑,镇万界奇葩皇帝合集全家天生神力,我靠脑子科举铁骑朔风:我在汉匈当战神穿成农夫,从神箭手到大楚国公诗仙,神医,商圣,镇国公!敕封一品公侯原始:驯服母虎,走婚诸部山河鉴:隋鼎中国古代奇闻录白话文讲资治通鉴天幕:对!我爹洪武三十五年传位红楼:开局听劝系统,贾颜逆袭综武:我的弟子不知低调为何物元末:红旗漫卷,替天行道消失的墨者十世轮回之炼体时空霸主:从宋末开始打造全球帝大明余晖中的守夜人陛下,您的奏折上热门了!娘娘,请卸甲!顶级带娃:我给朱元璋带大孙重生明末?结党!必须结党!幽州铁骑:开局替刘备结拜了大明:朕即天意,手搓神话大军开局:系统,你管这叫九子夺嫡?古人的智慧开局穿越,我在晚唐搞基建我是纨绔世子,怎么就要造反了?我的庄园成了皇帝收留所荒年:从填饱贪吃嫂嫂后开疆扩土回到明末做皇帝大明医途:从洪武开始长生大明铁骨:系统在手,逆势铸神州大明第一会所:海天宴!爆兵后,我每天都在谋划造反康熙正史清穿:最强舰队!老子才是列强天幕直播:大明皇家奇案录!!!太后别点灯,奴才真是皇上