磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 167 章 方程根的个数之探秘

数日匆匆而过,学府内的书香依旧弥漫。戴浩文再次踏上那熟悉的讲台,新的知识篇章即将在学子们的期待中缓缓展开。

“诸位学子,前番我们在数列的世界中探寻智慧,今时今日,吾将引领尔等步入方程根的个数这一神秘领域。”戴浩文声音朗朗,目光扫过一众学子。

众学子正襟危坐,眼神中满是对新知识的渴求和好奇。

戴浩文轻挥衣袖,于黑板之上写下一道方程:“x2 - 5x + 6 = 0。”

“吾等先观此简单之例,求解方程之根,诸位当如何为之?”戴浩文问道。

有学子起身答道:“先生,可用因式分解之法,化为 (x - 2)(x - 3) = 0,得根为 2 与 3。”

戴浩文微微颔首:“善。然今所论者,非仅求其根,而在探究此类方程根之个数。”

他继而说道:“若方程为二次方程 ax2 + bx + c = 0,其判别式 Δ = b2 - 4ac 便为关键。当 Δ > 0 时,方程有两个不同之实根;当 Δ = 0 时,方程有两个相同之实根;当 Δ < 0 时,方程无实根。”

众学子听闻,纷纷低头记录。

戴浩文又举例道:“如方程 x2 + 2x + 1 = 0,其中 a = 1,b = 2,c = 1,Δ = 22 - 4x1x1 = 0,故而此方程有两个相同实根,即为 -1。”

为使学子们更明其理,戴浩文令学子们各自出题,相互求解判别式并判断根的个数。一时间,课堂内讨论之声四起,学子们或蹙眉思索,或欣然交流。

待众人稍有领悟,戴浩文话锋一转:“二次方程之理,诸位已略知一二。然方程之形多样,诸如三次方程、四次方程,乃至更高次方程,又当如何探究其根之个数?”

众学子面面相觑,皆感困惑。

戴浩文微笑道:“莫急。吾先以三次方程为例。”他在黑板上写下方程:“x3 - 6x2 + 11x - 6 = 0。”

“求解此类方程,需综合运用因式分解、试根等法。吾先试 x = 1,代入方程,发现等式成立,故 x - 1 为其一个因式。”戴浩文边说边演示。

经过一番推演,方程化为 (x - 1)(x - 2)(x - 3) = 0,“由此可知,此方程有三个实根,分别为 1,2,3。”

“至于更高次方程,其解法更为复杂,常需借助函数之图像,以观其走势,判断根之个数。”戴浩文继续讲解。

他画出函数 y = x3 - 6x2 + 11x - 6 的图像,“观此图像与 x 轴之交点,便知方程根之个数。”

学子们盯着图像,似有所悟。

戴浩文又道:“亦有一类方程,难以直接求解,如超越方程。例如,e^x - 2x - 1 = 0。”

他解释道:“此类方程,吾等可通过函数单调性、极值等性质来推断根之个数。先求其导数,判断函数增减区间,再观其极值。”

戴浩文详细地推导着,学子们跟随着他的思路,努力理解着其中的奥妙。

时光悄然流逝,已至正午,阳光透过窗棂洒入教室,但学子们浑然未觉,沉浸于知识的海洋。

“今日所学,颇为深奥,诸位需在课后多加琢磨。”戴浩文说道。

下午课程伊始,戴浩文继续深入探讨方程根的个数问题。

他在黑板上写下一道含参数的方程:“x2 + mx + 1 = 0。”

“若此方程有实数根,求参数 m 之取值范围。”戴浩文抛出问题。

学子们纷纷动笔演算。戴浩文则在台下巡视,观察学子们的解题思路。

少顷,戴浩文走上讲台,开始讲解:“由判别式 Δ = m2 - 4,若方程有实根,则 Δ ≥ 0,即 m2 - 4 ≥ 0,解得 m ≥ 2 或 m ≤ -2。”

接着,他又给出几道类似的含参数方程,让学子们巩固所学。

“再看这道方程,”戴浩文又写下:“x3 - 3x + k = 0,已知其有且仅有一个实根,求 k 的取值范围。”

学子们再次陷入沉思。戴浩文提示道:“可先求导,分析函数单调性。”

经过一番思考和讨论,学子们逐渐找到了解题的关键。

戴浩文见众人有所领悟,心中甚喜,又道:“方程根之个数问题,亦与函数之零点定理相关。若函数 f(x) 在区间 (a, b) 内连续,且 f(a) 与 f(b) 异号,则在区间 (a, b) 内至少存在一个零点,即方程 f(x) = 0 在区间 (a, b) 内至少有一个实根。”

为让学子们更好地理解,戴浩文举例画图,详细阐述。

随后,戴浩文又列举了一些实际应用中的方程根的个数问题,如物体运动轨迹方程、桥梁受力方程等,让学子们明白方程根的个数问题在生活中的重要性。

课程接近尾声,戴浩文总结道:“方程根之个数,乃数学之重要内容,其理深邃,应用广泛。望诸君勤加研习,日后必能有所用。”

学子们虽感疲惫,但收获满满,眼中满是对未来学习的期待。

次日,戴浩文再次走进教室,开始检验学子们对昨日所学的掌握情况。

他在黑板上写下几道难题,让学子们上台解答。学子们有的思路清晰,顺利解题;有的则略显紧张,出现失误。戴浩文均一一耐心指导,纠正错误。

之后,戴浩文又针对学子们的薄弱环节进行了重点复习和强化训练。

“数学之途,永无止境。方程根之个数,仅是冰山一角。”戴浩文鼓励学子们,“只要汝等有恒心、有毅力,定能在数学之海洋中畅游无阻。”

在接下来的日子里,戴浩文不断变换教学方法,通过实例分析、小组讨论、专题研究等方式,加深学子们对方程根的个数的理解和应用能力。

学府内,学子们时常聚在一起,探讨方程之奥秘,学术氛围愈发浓厚。

一次考核中,学子们在方程根的个数相关题目上表现出色,戴浩文深感欣慰。然而,他深知教学之路漫长,仍需不断探索创新,引领学子们走向更高深的数学殿堂。

春去秋来,学府内的学子们在戴浩文的教导下,在数学的道路上稳步前行,不断追求着真理与智慧。

磨铁读书推荐阅读:逼妖为良:妖孽殿下来敲门我的老婆是执政官大明:不交税就是通鞑虏盛嫁之庶女风华流氓帝师大唐:权谋凭着不是反派活着大华春秋,混在秦末一统天下棘圜志这个萌娃竟然是大明太孙朱雄英一梦越万年我在大唐斩妖邪抗战之第十班从废物到大帝,你们高攀不起!万历1592从敌国开始征战蜀汉的复兴红楼之开国篇开局百万熟练度,我举世无敌召唤系统:从土匪开始称霸天下我在宋朝教王安石变法太超前亮剑之浴血抗战捡到一本三国志三国:让你降吴,你绑架孙权大文学家水浒赘婿:娘子,我们反了吧!三国:虎牢关前,开局秒杀关二爷带着诸天万佛金身重塑系统穿越了我在影视世界和主角抢机缘后汉英雄传之重生吕布神探张天海腹黑丞相的宠妻三路牧唐开局狂怼三野狗,二斤狗肉换姑娘李世民假死,那天下不就是小爷的了?大唐再起三国之公孙大帝大明:开局我跟朱元璋谈人丁税清正史编代九龙夺嫡,废物皇子竟是绝世强龙今晚教坊司包场,女帝破门而入三国黄巾逆袭抗旨他都敢,还有什么不敢做?世子的侯门悍妻大秦带我那迷人的老祖宗统一地球我是正统我怕谁郭嘉三国:搞定蔡文姬:斩获霸王之力宋宫十八朝演义大明匹夫
磨铁读书搜藏榜:相府毒千金三国第一奸贼鬼明开局重生太子丹,郭嘉带我复兴大燕开局怒喷扶苏,这个皇帝我来当!特种兵之神级技能男配个个是戏精庶女攻略我在大唐行医的那些年陛下,臣只想吃软饭史上最强太子!从门吏开始光宗耀祖大庆风云录大明中兴全凭杀杀杀抢抢抢大明忠勇侯我真不想当圣人啊!关于我穿越大明当皇帝这件事不好!魏征又带他儿子上朝了!大明:开局将朱祁镇驱逐朱家!靑海传词条返还,一统天下从收徒朱元璋开始金牌帝婿三国:最强争霸系统妃皇腾达,傲世毒妃不好惹饥荒开局:惨死的都是有粮的我给崇祯当老师绝色红颜,高门贵妻大航海之重生主宰我的帝国弗利兰出生后就被内定为皇后重生之再造华夏再生缘:我的温柔暴君(全本+出版)高武三国:从被华雄秒杀开始汉末:袁本初重铸霸业卫青传奇人生大唐太子李承乾,李世民求我登基三国崛起并州与秦始皇做哥们儿异界摆摊,县令催我快出摊南宋弃子国宝的文明密码请叫我威廉三世三国之极品纨绔三国之从益州争霸开始大明:模拟曝光,朱元璋让我造反夺舍崇祯:成就华夏帝国穿越成无敌的明朝皇帝红楼:曹操转生,开局杀贾珍皇帝:朕的九皇子带兵,天下无敌错进洞房:娘子快到碗里来
磨铁读书最新小说:再续蜀汉的浪漫铁血西域:开局结果了噶尔丹乱匪开局,看我如何倒反天罡!沈少卿探案智霸大夏:从地主傻儿到开国大帝我只做风流皇帝,天下美人皆归朕宋骑天下一人修真传带着八位嫂嫂流放本想混口饭,科举连中六元惊陛下八百铁骑,镇万界奇葩皇帝合集全家天生神力,我靠脑子科举铁骑朔风:我在汉匈当战神穿成农夫,从神箭手到大楚国公诗仙,神医,商圣,镇国公!敕封一品公侯原始:驯服母虎,走婚诸部山河鉴:隋鼎中国古代奇闻录白话文讲资治通鉴天幕:对!我爹洪武三十五年传位红楼:开局听劝系统,贾颜逆袭综武:我的弟子不知低调为何物元末:红旗漫卷,替天行道消失的墨者十世轮回之炼体时空霸主:从宋末开始打造全球帝大明余晖中的守夜人陛下,您的奏折上热门了!娘娘,请卸甲!顶级带娃:我给朱元璋带大孙重生明末?结党!必须结党!幽州铁骑:开局替刘备结拜了大明:朕即天意,手搓神话大军开局:系统,你管这叫九子夺嫡?古人的智慧开局穿越,我在晚唐搞基建我是纨绔世子,怎么就要造反了?我的庄园成了皇帝收留所荒年:从填饱贪吃嫂嫂后开疆扩土回到明末做皇帝大明医途:从洪武开始长生大明铁骨:系统在手,逆势铸神州大明第一会所:海天宴!爆兵后,我每天都在谋划造反康熙正史清穿:最强舰队!老子才是列强天幕直播:大明皇家奇案录!!!太后别点灯,奴才真是皇上