磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

2.3 检索增强生成技术

RAG(Retrieval-Augmented Generation)技术是一种结合了信息检索(Retrieval)和文本生

成(Generation)的自然语言处理(NLp)方法。核心思想是将传统的检索技术与现代的自然语言

生成技术相结合,以提高文本生成的准确性和相关性。它旨在通过从外部知识库中检索相关信息来

辅助大型语言模型(如 Gpt 系列)生成更准确、可靠的回答。

在 RAG 技术中,整个过程主要分为三个步骤如图 2.2 所示:索引( Indexing)、检索

(Retrieval)和生成(Generation)。首先,索引步骤是将大量的文档或数据集合进行预处理,将

其分割成较小的块(chunk)并进行编码,然后存储在向量数据库中。这个过程的关键在于将非结

构化的文本数据转化为结构化的向量表示,以便于后续的检索和生成步骤。接下来是检索步骤,它

根据输入的查询或问题,从向量数据库中检索出与查询最相关的前 k 个 chunk。这一步依赖于高效

的语义相似度计算方法,以确保检索到的 chunk 与查询具有高度的相关性。最后是生成步骤,它将

原始查询和检索到的 chunk 一起输入到预训练的 transformer 模型(如 Gpt 或 bERt)中,生成最

终的答案或文本。这个模型结合了原始查询的语义信息和检索到的相关上下文,以生成准确、连贯

且相关的文本。

RAG 的概念和初步实现是由 douwe Kiela、patrick Lewis 和 Ethan perez 等人在 2020 年首次

提出的。他们在论文《Retrieval-augmented generation for knowledge-intensive nlp tasks》

中详细介绍了 RAG 的原理和应用,随后谷歌等搜索引擎公司已经开始探索如何将 RAG 技术应用到搜

索结果的生成中,以提高搜索结果的准确性和相关性。在医疗领域,RAG 技术可以帮助医生快速检

索医学知识,生成准确的诊断建议和治疗方案。

2.4 文本相似度计算

文本相似度计算是自然语言处理(NLp)领域的一个重要研究方向,它旨在衡量两个或多个文

本之间的相似程度。文本相似度计算的原理基于两个主要概念:共性和差异。共性指的是两个文本

之间共同拥有的信息或特征,而差异则是指它们之间的不同之处。当两个文本的共性越大、差异越

小,它们之间的相似度就越高。

文本相似度计算可以根据不同的分类标准进行分类。首先基于统计的方法分类,这种方法主要

关注文本中词语的出现频率和分布,通过统计信息来计算文本之间的相似度。常见的基于统计的方

法有余弦相似度、Jaccard 相似度等。其次是基于语义的方法分类,这种方法试图理解文本的含义

和上下文,通过比较文本的语义信息来计算相似度。常见的基于语义的方法有基于词向量的方法

(如 word2Vec、GloVe 等)和基于主题模型的方法(如 LdA、pLSA 等)。最后是基于机器学习的方

法分类,这种方法利用机器学习算法来训练模型,通过模型来预测文本之间的相似度。常见的基于

机器学习的方法有支持向量机(SVm)、神经网络等。

目前,在国内外,文本相似度计算已经取得了丰富的成果。国内方面,清华大学等机构的研究

者提出了基于深度学习的文本相似度计算方法,利用神经网络模型来捕捉文本的深层语义信息,实

现了较高的相似度计算精度。江苏师范大学的研究者提出了利用《新华字典》构建向量空间来做中

文文本语义相似度分析的方法,该方法在中文文本相似度计算方面取得了显着的效果。放眼国外,

Google 的研究者提出了 word2Vec 算法,该算法将词语表示为高维向量空间中的点,通过计算点之

间的距离来衡量词语之间的相似度。word2Vec 算法在文本相似度计算领域具有广泛的影响。斯坦

福大学等机构的研究者提出了 bERt 模型,该模型通过大量的无监督学习来捕捉文本的上下文信

息,可以实现高精度的文本相似度计算。bERt 模型在多项自然语言处理任务中均取得了优异的表

现。

2.5 本章小结

本章主要介绍了本项目中使用的四种关键技术与模型。这些技术主要基于大型语言模型,并且

依赖于 RAG 技术的原理。介绍了知识抽取技术,它利用先进的自然语言处理技术从文本中提取有意

义的信息和知识,随后讨论了文本处理中所使用的 RAG 技术,该技术可以显着提高大型语言模型在

专业领域的性能,增强信息检索的准确性和效率。最后探讨了在文本比对过程中所需的相似度计算

方法,这对于评估文本之间的相似程度至关重要。

了解清楚数据获取来源后,进行数据采集,数据采集的方法包括自动化和手动两种方式:

自动化采集:利用编写的 python 脚本通过 ApI 接口自动从上述数据库和期刊中下载文献和元

数据,部分代码如图 3.2 所示。这种方法的优点是效率高,可以大量快速地收集数据。使用

beautifulSoup 和 Requests 库从开放获取的期刊网站爬取数据。

手动采集:通过访问图书馆、研究机构以及联系文章作者等方式获取不易自动下载的资源。虽

然此方法更费时,但有助于获取更全面的数据集,特别是一些最新或尚未公开的研究成果。

将两种方法采集到的文献数据进行汇总,最大范围的将有关电力 LcA 领域的英文文献进行汇

总,共获得 507 篇。

最后是将各个途径获取到的文献数据和元数据汇总,进行数据预处理。

采集到的数据需经过清洗和预处理,才能用于后续的分析。

数据预处理的步骤包括:

数据清洗:删除重复的记录,校正错误的数据格式,填补缺失值。

数据整合:将来自不同来源的数据整合到一个统一的格式和数据库中,如表 3.1 所示,以便进

行进一步的分析。

为了使后续知识库生成更加准确与完善,对文献具体内容进行筛选。例如部分文献中并未提到

所用数据,而是指出所用数据库链接,如图 3.3 所示,在对该篇文献进行解析后,数据部分就是欠

缺的,最终构建的知识库就不完整,在调用大模型回答相关问题时,极大概率产生幻觉。因此为了

构建更为准确的专业模型,对爬取下来的 507 篇文献进行筛选,选择包括流程图(system

boundaries)、各单元过程或生产环节的投入( input),产出( output),数据( life cycle

inventory),以及数据的时间、地点、获取方法、技术细节的文献作为最后应用的数据。核对内容

后的文献数据集共 98 篇英文文献。

磨铁读书推荐阅读:萌娃修仙:我的姐姐是个老妖怪太子女儿身?九千岁助我当女帝抄家后,第一美人被权臣强取豪夺舰娘:异界来者变身综漫少女只想变强不软弱!荒村血祭轻熟末世空间:重生后被疯批娇宠了穿书之逆转乾坤综刀剑:都是挚友我怎么就海王了拐个总裁做驸马顶级绿茶穿越成了豪门里的真千金冷情糙汉一开窍,娇软知青扛不住地府公务员她恃美行凶冷艳总裁的贴身狂兵秦风李秋雪穿书七零?不怕!咱到哪都能潇洒幻兽飞雪传穿书霸总文,我竟是王妈女明星美又娇,刑警队长宠折腰姑奶奶喜乐的幸福生活四合院:万倍经验暴击,众禽慌了禹雪缠欢系统修仙:团宠废物小师妹无敌了谁家正经爹妈会玩强制爱啊80小夫妻:你上大学,我摆摊成婚当晚,我被病娇反派强取豪夺太师祖在下,孽徒桀桀桀!我靠鸡蛋开局,全世界都是我粉丝三生有幸只因遇见你天选小炮灰,我作死你们漂亮老婆请回家娇媳妇宠又甜:腹黑糙汉心尖尖40k,但随身携带讲话器黑神话:吾为天命狼魔帝记忆曝光,七大女帝悔断肠我将万界商城大陆打造成洪荒电影世界抱得美鬼归全家独宠养女?我将满门逐出家谱薄爷,退你婚的小祖宗又掉马甲了满门仙风道骨,小师妹嗨到入土作精媳妇,随军养娃的日常生崽疼哭,豪门老公日日哄妻抱娃柯南:我能用模拟器也很柯学吧抗战之血战山河软糯小花妖,被书生捡回家娇养了逼她替嫁?福运全被真千金带走啦快穿:恶毒女配成了男主的心尖宠四合院:小宝的幸福生活HP之她为什么会进斯莱特林?发疯娱乐圈,你颠我也颠
磨铁读书搜藏榜:重生军婚之宠爱三千:开局仨崽新科状元郎家的小福妻她有冥帝撑腰,没事不要找她作妖小透明的影后之旅穿越了,成为了全家的宠儿昊天纪年从迪迦开始的无限之旅寻金夜行者魔修仙界空洞骑士:圣巢戮途捕风捉凶让你演恶毒女配不是窝囊废界灵幻世嫁良缘快穿结束,回到原世界只想摆烂!湮火者,将赐予你终结!绝世凶徒海贼:全新旅程嫁狐猎户家的夫郎从天降她是,怦然惊欢诡途觅仙美强惨的首富老公是恋爱脑弃女归来她惊艳了世界盗墓:换了号,怎么还被找上门jojo:DIO兄妹的不妙冒险云龙十三子之七剑与双龙君渡浮虚变身从古代开始灵气复苏萌妻不乖:大叔撩上瘾星穹铁道:双生同源翘然有你精灵宝可梦之黑暗世界的小智漂亮宝妈靠十八般武艺教全网做人纨绔公主她躺赢了百日成仙嘿哈,快穿一霸横扫天下上什么班?回家种田!铠甲:我左手黑暗帝皇,右手修罗换来的短命夫君,要靠我用异能救霸住不放,金丝雀每天都在拒绝我是警察,别再给我阴间技能了抄家后,第一美人被权臣强取豪夺人在宝可梦,开局碰瓷霸主级耿鬼名门贵医宝可梦:开局一只上将巨钳蟹!我和离当晚,九皇叔激动得一夜未眠秦大小姐的爱哭包四合院:重生获得超级金手指
磨铁读书最新小说:从高中生到死神火影:宇智波狂笑四杰,摸尸变强红尘旅途白事一条龙,包阴间的昭镜司女官:案案必破昊天纪年宝可梦世界,晨曦初光的照耀女友是UG首席,天天分析我战力杀手穿兽世,生崽就升级社畜穿越后靠摆烂成修仙大佬焚天冰霜浪浪人生红尘客修仙,我害怕邓氏双标惊!废物千金是满级大佬换皮后,阿妹替我风光大嫁医手遮天:废柴庶女逆袭成女王我毕业大学生,怎么成猎魔人了?穿越律者美少女却被当做精灵攻略被那个暴戾督公盯上后,我麻了僵尸:九叔小师祖,炼尸就变强火影:四代神体,木叶隐龙外卖员,开局被御姐领进42局续命后桃花朵朵来一念缱绻:把你放进未来里手术台上醒来后神医嫡女她杀疯了重生七六小医仙:开局继承抚恤金予你璀璨时光南山有归人无量心经:从破庙沙弥到轮回圣佛万界历练:南宫翰的证道之路离婚当天,我怀仔踹了渣男总裁闺蜜认亲后,我在豪门看狗血八卦欸,我的队友怎么就冲上去了快穿万物有灵冲冲冲逆灵焚天诡秘直播:我的观众不是人家族修仙:开局一座玉泉山考古直播,破千年古墓火遍全网穿越物资签到系统被迫娶五个老公烈焰焚心:总裁的赎罪追妻朱门春闺动物密事生活九域大主宰和三个损友穿越明日方舟别说了我真不是道祖自机角色:星穹列车上的圣骑士荆棘血冕不是清冷道长?怎么是阴湿男啊!重生芳华:从对越自卫反击战开始