磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

说实话,开创“机器学习”新领域,成为“深度学习”等技术路线的指路人,的确十分诱人,光是提出“人工神经网络”的概念,就足以名垂青史了。

但对于自己现在的水平,江寒心里还是很有数的,不谦虚地说,只能算略知一二。

前世虽然上过大学,学的却不是计算机专业,在编程和硬件领域,基本上全靠自己摸索,知识体系并不完善。

至于“人工神经网络”方面,前后只看了几本入门教材,外加在P站看了十几个系列视频教程。

一些重要的概念是清楚的,一些经典算法也是了解的,做一些简单的推演,应该也没什么大问题。

可许多公式背后的原理,当时就没能理解得十分深刻,到了现在,印象就更加模糊了。至于那些需要最先进的数学工具,才能完成的证明与推导……

在机器学习领域,“深度学习”被称作最具颠覆性的理论,以他目前掌握的这点儿皮毛,想要从无到有地开辟出一整条技术路线,难度可想而知。

可难就不搞了吗?

这是个难得的机遇,一定要好好把握才行。只是他还需要好好想一想,如何妥善运用那些“走私”来的知识。

既要充分发掘价值,也要注意合理性。起码拿出来的东西,要符合自己的人设,要找得到合理的解释,免得惹出什么不必要的麻烦……

江寒前思后想,终于做出了决定。

总之,必须尽快将“感知机”的概念抛出去,否则后续的一系列技术,全都得憋在脑袋里,没法拿出来见人。

只是这样一来,估计自己将来基本跑不掉一个“机器学习宗师”、“AI教父”、“人工神经网络创始人”之类的称号了……

别看“感知机”简单,却是“人工神经网络”的基石,很多“机器学习”算法,比如支持向量机(SVM)、深度学习、D-QLearning、生成对抗网络(GAN)……都是在其基础上才发展出来的。

在另一个世界,“感知机”的概念诞生于1957年,由Cornell航空实验室的FrankRosenblatt提出。

本质上是一个线性分类模型,用于解决二元线性分类问题,对应于输入空间中将实例划分为两类的分离超平面,是最简单的前馈人工神经网络。

好吧,说人话。

简单点说,感知机就是一个算法,通过大量训练,可以让电脑掌握某种规则,然后按照这种规则,将输入的数据分成两类。

如果输入的数据空间只有两个维度,将其视作平面直角坐标系,那么“感知机”的图像,其实就是一根直线。

“感知机”虽然简单,还是有点用的。

比如经过训练后,输入身份证号,就能帮你判断出是男是女;比如输入身高和体重,就能判断是否超重……

可能有人会问:随便写个程序,不是很简单就能实现这些功能吗?

但感知机的神奇之处,在于使用同样结构的程序,就能在很多领域里通用,而不用针对性编程。

这是机器学习和常规编程的本质区别。

感知机结构异常简单,工作原理也不复杂,但要想写成论文,也需要进行一些数学推导,以及前置理论。

“感知机”是建立在M-P模型的基础上的。

生物的神经细胞结构,主要由树突、突触、细胞体及轴突组成。单个神经细胞有两种状态:激活或者未激活。

神经细胞是否激活,取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。

当信号量总和超过了某个阈值时,神经元就会激活,产生电脉冲,电脉冲会沿着轴突并通过突触传递到其它神经元……

M-P模型就是模拟生物神经元的工作机制,创建出来的一种数学模型,采用阈值加权和与激活函数来控制信息传导过程,是生物神经元的一种简单抽象。

如果M-p模型的相关论文尚未发表,江寒就需要自己推导,并将其容纳进自己的论文里,否则难以自圆其说。

在写论文前,必须扫清障碍,接下来江寒就开始在网上寻找论文和线索。

功夫不负有心人,江寒几经周折,终于在一个学术网站,找到了那篇讲述M-P模型的论文:《Alogicalcalculusoftheideasimmanentinnervousactivity》。

这篇论文发表也有几十年了,却没在这个世界引起多少关注,引用数更是少得可怜,不过也幸好如此,否则哪轮得到自己来引领时代风骚?

江寒重生前就看过这篇论文,但那时候并没怎么细心揣摩,只是一扫而过,现在为了写出合格的SCI论文,自然要好好琢磨了。

他找来一个只写了两、三页的日记本,边刷论文边记录要点和心得,论文里遇到的术语,如果不十分理解,还要上网寻找文献和参考资料,还要确定来源是否可靠……

时间过得很快,转眼一个小时过去。

虽然说高三寝室并不会熄灯,但室友们总要睡觉的,老李那边也不能拖延太久。江寒看看重要问题基本解决得差不多了,就将手机上交,然后匆匆洗漱、上床休息。

第二天。

江寒醒得有点早,看看时间,还差几分钟才5点,就决定去操场上跑跑步。

上辈子疏于锻炼,身体素质始终没提上来,没到30岁就处于亚健康状态了,这一世他不想重蹈覆辙。

很快洗了把脸,然后来到操场。

到了地方才发现,刚刚5点就已经有不少人来锻炼了,跑步的,压腿的,打球的,玩单双杠的……

“像我这么勤奋的人,还真不少啊!”江寒感慨了一句,活动下关节,压了几下腿,然后开始慢跑。

运动时脑子也闲不下来,学习的事情、赚钱的事情、系统的事情,“神经网络”、“感知机”、“M-P模型”……各种念头纷至沓来。

千头万绪,此起彼伏。

江寒正心不在焉跑着,忽然发现前面不远处,有个女生也在慢跑,背影很惹眼,好像有点眼熟。

不一会儿,经过那个女生身边时,他才确认自己并没有认错,果然是夏雨菲。

有个大活人在身边跑步,夏雨菲自然不可能发现不了,但并没有做出什么反应,看都不看他一眼。

“早啊!”江寒笑容爽朗。

“早。”夏雨菲淡淡回了一句,眼光都没偏一下,自顾自跑着。

江寒只是出于礼貌,才打了个招呼,没想到她会回应。

声音还挺脆,就是神情十分冷淡,有点拒人于千里之外的意思……

大概这姑娘经常被搭讪,内心已经毫无波动,说不定还很不耐烦?

江寒笑了笑,不再理会,很快超了过去。

既然人家对他没兴趣,他就不会多打扰。

重活一世,他不会舔任何人,哪怕是夏雨菲。

磨铁读书推荐阅读:小王爷他必不可能动心重生军婚:首长大人套路深女总裁的逍遥兵王王者荣耀:国服男神是女生绝品乡村小神医昼夜妄想超级吞噬系统我家妻主超高冷医门宗师寒天帝三十八岁桃花劫宠物小精灵之冠军皮卡丘重生一次,可不是来遭罪的!大佬他命里缺我直播鉴宝:宝友,你这可太开门了!城市里的法师想修道盛世官商东汉末年枭雄志游神九八佬将我除名?特种部队跪求我加入!我拍戏不在乎票房重来1992四合院之饮食男女相思西游之大圣追爱记笪子隐娱乐:小鲜肉顶流出道我在农村说媒,拯救天下光棍重生娱乐圈之名门盛婚农家二姐的诰命之路分班第一天,暗恋校花主动来找我团宠妹妹在综艺爆火了超级城市制造商做媒这一块,我谁都不服觉醒,你惹他干嘛,他是暗影天灾陆凡唐浣溪免费阅读弘法济世美人如玉流氓魔主一夜之间,大叔的生活触底反弹蜀山门徒老胡同萌宝来袭:带着空间穿九零女尊:她们都是坏人我有一个世界,狗头金随便捡穿越之兵王系统天命相师穿成小寡妇后我乘风破浪从斗罗开始吞噬万界年代穿书:真千金有拼夕夕系统私婚之Boss的VIP老婆
磨铁读书搜藏榜:我有一个异世界天家小农女又谜又飒穿成悲催农女后的发家日常上门佳婿大国重器:机师成神之路!开局我怒休渣男逃离异都王牌相公:霸道妻主爱上我身为仙帝的我开局穿越了万亿透视豪医鸡飞狗跳的农门生活重生之着魔.操盘手札记无限影视,从流金开始岁月如此多娇相思西游之大圣追爱记觉醒钞能力都市医仙魂穿大汉之未央宫赋都市游侠之青铜短剑农女:星际战将在古代开顺风快递残疾大佬不孕不育?她一胎生四宝!带着萌宝去结婚于枫于山高雨霜噩梦复苏,我有一只小僵尸盗墓:露出麒麟纹身后,蜜热麻了三国召唤之袁氏帝途民政局门口签到,奖励美女老婆想躺平,却被娱乐圈女人们套路了特级厨师四合院:这个司机太过嚣张开局被医闹,我反手赐她们绝症!赘婿无双官道红颜四合院:从下乡归来后开始离婚后我成了薄爷的白月光闪婚甜蜜蜜:总裁老公宠爆了黑心娇妻,太放肆!我是真有宝藏农家努力生活乡村野汉:与表姐一起钻进山林白手起家杀嫡重生,反派演员被爆捐款无数一窝三宝,总裁喜当爹沧桑之情天才高手的妖孽人生从1977开始快穿之跪求愿望成真绝世容颜美女总裁董事长是我老婆幽冥录:三界笑谭
磨铁读书最新小说:羽晓梦藤萝放纵系神豪,你们的女神我来调回到10岁年代,从女知青逼洞房开始让你替妹妹当明星,你咋成魅魔了道门谷叔传荒村夜色抗日:我的士兵是第四天灾!重生大一,从征服御姐老师开始权力之巅:从一线民警到警界高官废柴神使与醉鬼神只师姐带飞大佬下山无敌大蜜蜜的整活男友小于平凡的一生重生港岛之打造黄氏财阀官场秘书:开局分手后被火箭提拔749最强莽夫,兼职干饭人御兽:从觉醒神级天赋开始外卖逆袭:开局送瘫系统大佬都说我分解废,谁料我分解神制卡:不好意思,神话卡才是标配什么叫嫡长子把自己废了让我上位华娱从红楼梦立项开始财富的双刃剑,资本市场的兴与衰绿茶?分明是宝藏女孩!被判无期?我掠夺罪恶升级成神!幽冥录:三界笑谭胡闹!你个吸血鬼还晒上太阳了?小农王七天后穿越,我靠囤货纵横异界人在都市,竟绑定了帝皇系统从高中开始的除魔师抗战:老李笑书呆子,我怒考黄埔和校花的修真记缅北蚀骨以尘,以火,以歌我和空姐荒岛求生的日子二百万买来的保镖,竟是兵王!蓝星现代修仙者的长生之路天门重启:我以武道镇万族抗战:每天一个签到爆兵无数龙虎山出来的高手一品土匪向光而行,向你而去处处吻星辰开局卖菜,我缔造商业帝国系统成就平凡人生穿成恶毒女配病娇女主却不肯放过分手后,意外偶遇前女友美艳妈开局十八个圣杯,我震惊了全网导演2002:攻略刘天仙